Differential fate of glycoproteins carrying a monoglucosylated form of truncated N-glycan in a new CHO line, MadIA214214, selected for a thermosensitive secretory defect

Author:

Ermonval M.1,Cacan R.1,Gorgas K.1,Haas I.G.1,Verbert A.1,Buttin G.1

Affiliation:

1. Unite de Genetique Somatique, URA CNRS 1960, Institut Pasteur, Paris, France. mermonva@pasteur.fr

Abstract

A temperature sensitive secretory line, MadIA214, was selected from mutagenized Chinese hamster ovary cells that express two heterologous export marker proteins: a secretory form of the human placental alkaline phosphatase (SeAP), and the Kd heavy chain of mouse MHC class I. SeAP secretion in MadIA214 was extremely reduced at elevated temperature (40 degrees C), while the export of functional H-2Kd molecules to the plasma membrane was only slightly affected. This mutant constitutively transferred onto newly synthesized proteins a truncated oligosaccharide core, Man5GlcNAc2, which was monoglucosylated in the protein-bound form. Nevertheless, the final oligosaccharide-structures associated to mature SeAP and H-2Kd were similar in mutant and wild-type glycoproteins. The inaccessibility in MadIA214 endoplasmic reticulum (ER) of one or more components required for oligosaccharide chain elongation is supported by the reconstitution of a correct core structure, obtained after disruption of cellular compartments, but not after cell permeabilisation or blocking ER-to-Golgi transport. The increased association of the ER-chaperone BiP with immature SeAP correlated with the thermodependent decrease in SeAP secretion. The retention of incompletely folded polypeptides in MadIA214 parallels both a marked ER-dilation and an important glycoprotein degradation documented by the formation of soluble oligomannosides with one GlcNAc residue. Our data provide the first in vivo evidence that the initial step in N-glycosylation differentially governs glycoprotein maturation, transport and degradation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3