Regulated expression of fibronectin, laminin and related integrin receptors during the early chondrocyte differentiation

Author:

Tavella S.1,Bellese G.1,Castagnola P.1,Martin I.1,Piccini D.1,Doliana R.1,Colombatti A.1,Cancedda R.1,Tacchetti C.1

Affiliation:

1. Istituto Nazionale per la Ricerca sul Cancro, Centro Biotecnologie Avanzate, Genova, Italy.

Abstract

We have investigated the expression and localization of fibronectin, laminin, and their receptors, and we used an in vitro chick chondrocyte differentiation model to define a time hierarchy for their appearance in early chondro-genesis and to determine their role in the cell condensation process. By serum fibronectin depletion/reconstitution, or GRGDSP peptide competition experiments, we show that fibronectin contributes to the initial cell-cell interactions that occur during condensation. In later stages, a down-regulation of both fibronectin and of its alpha5beta1 integrin receptor occur, as demonstrated by mRNA and protein kinetics. Immunolocalisation studies suggest that the reduction of fibronectin in discrete areas is involved in local activation of the cell differentiation program. Furthermore, we show that laminin is expressed during the in vitro cell condensation process in areas that are negative for fibronectin staining. The types of laminin as well as the timing of expression have been determined by northern blot and RT-PCR analyses. The highest levels of expression are coincident with maximal cell aggregation. The alpha3beta1 laminin receptor, highly expressed in dedifferentiated cells, follows later on the ligand trend. During in vitro chondrogenesis, a down-regulation in the B isoform, and an up-regulation of the A isoform, of the alpha subunit of the alpha6beta1 laminin receptor occurs. Immunolocalisation studies suggest that laminin is involved in the definition of differentiating areas as opposed to non differentiating areas of the condensed region, i.e. the periphery, which eventually gives rise to the perichondrium.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3