Local DNA synthesis is critical for DNA repair during oocyte maturation

Author:

Singh Ajay K.1ORCID,Kumar S. Lava12ORCID,Beniwal Rohit12ORCID,Mohanty Aradhana12ORCID,Kushwaha Bhawna1ORCID,Rao H. B. D. Prasada1ORCID

Affiliation:

1. National Institute of Animal Biotechnology, Hyderabad, Telangana 500032, India

2. Graduate studies, Regional Centre for Biotechnology, Faridabad 121 001, India

Abstract

ABSTRACT Mammalian oocytes can be very long-lived cells and thereby are very likely to encounter DNA damage during their lifetime. Defective DNA repair may result in oocytes that are developmentally incompetent or give rise to progeny with congenital disorders. During oocyte maturation, damaged DNA is repaired primarily by non-homologous end joining (NHEJ) or homologous recombination (HR). Although these repair pathways have been studied extensively, the associated DNA synthesis is poorly characterized. Here, using porcine oocytes, we demonstrate that the DNA synthesis machinery is present during oocyte maturation and dynamically recruited to sites of DNA damage. DNA polymerase δ is identified as being crucial for oocyte DNA synthesis. Furthermore, inhibiting synthesis causes DNA damage to accumulate and delays the progression of oocyte maturation. Importantly, inhibition of the spindle assembly checkpoint (SAC) bypassed the delay of oocyte maturation caused by DNA synthesis inhibition. Finally, we found that ∼20% of unperturbed oocytes experienced spontaneously arising damage during maturation. Cumulatively, our findings indicate that oocyte maturation requires damage-associated DNA synthesis that is monitored by the SAC. This article has an associated First Person interview with the first author of the paper.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3