After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available

Author:

Rapp Alexander1,Greulich Karl Otto1

Affiliation:

1. Institute of Molecular Biotechnology Jena, Beutenbergstr. 11, 07745 Jena, Germany

Abstract

After induction of DNA double-strand breaks (DSB) two repair systems, the error-prone `nonhomologous end joining' (NHEJ) and the more accurate `homologous recombination repair' (HRR) can compete for the same individual DSB site. In the human keratinocyte cell line, HaCaT, we have tested the spatial co-localisation and the temporal sequence of events. We used UV-A (365 nm) as a damaging agent, which can be applied in clearly defined doses and can lead to rare DSBs via propagation of clustered single-strand breaks (SSBs). DNA fragmentation and repair was measured by the Comet assay and persisting DSBs were quantified by the micronucleus assay. Direct DSB detection was performed by immunohistochemical labelling of γ-H2AX, a phosphorylated histone that is assumed to form one foci per DSB. Intra- and inter-pathway interactions were quantified by co-localisation, FRET imaging and by co-immunoprecipitation (Co-IP) of XRCC4, DNA-PK and Ku70 as representatives of NHEJ, Rad51 and Rad52 for HRR and γ-H2AX, Mre11 and Rad50 as representatives of both pathways. In G2 cells, where both systems are available, the temporal sequence after irradiation is: (1) γ-H2AX (2) Mre11 (3) DNA-PK Rad51 (4) XRCC4. That is, the first two proteins involved in both pathways `label' the damaged site and initiate repair, followed by the NHEJ, which is temporally overlapping with HRR activity. Taking all these observations together we suggest that a cell tries to repair DSBs with a combination of both HRR and NHEJ, if available.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3