NF-κB signalling regulates the growth of neural processes in the developing PNS and CNS

Author:

Gutierrez Humberto1,Hale Valerie A.1,Dolcet Xavier1,Davies Alun1

Affiliation:

1. School of Biosciences, Biomedical Building, Museum Avenue, PO Box 911,Cardiff, CF10 3US, Wales

Abstract

The proper growth and elaboration of neural processes is essential for the establishment of a functional nervous system during development and is an integral feature of neural plasticity throughout life. Nuclear factor-kappa B(NF-κB) is classically known for its ubiquitous roles in inflammation,immune and stress-related responses and regulation of cell survival in all tissues, including the nervous system. NF-κB participation in other cellular processes remains poorly understood. Here we report a mechanism for controlling the growth of neural processes in developing peripheral and central neurons involving the transcription factor NF-κB. Inhibiting NF-κB activation with super-repressor IκB-α, BAY 11 7082(IκB-α phosphorylation inhibitor) or N-acetyl-Leu-Leu-norleucinal(proteosomal degradation inhibitor), or inhibiting NF-κB transcriptional activity with κB decoy DNA substantially reduced the size and complexity of the neurite arbors of sensory neurons cultured with brain-derived neurotrophic factor while having no effect on their survival. NF-κB exerted this effect during a restricted period of development following the phase of naturally occurring neuronal death when the processes and connections of the remaining neurons are extensively modified and refined. Inhibiting NF-κB activation or NF-κB transcriptional activity in layer 2 pyramidal neurons in postnatal somatosensory cortical slices reduced dendritic arbor size and complexity. This function of NF-κB has important implications for neural development and may provide an explanation for reported involvement of NF-κB in learning and memory.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3