Muscle specialization in the squid motor system

Author:

Kier William M.1,Schachat Frederick H.2

Affiliation:

1. University of North Carolina, Chapel Hill, NC 27599, USA

2. Duke University Medical Center, Durham, NC 27710, USA

Abstract

SUMMARYAlthough muscle specialization has been studied extensively in vertebrates,less is known about the mechanisms that have evolved in invertebrate muscle that modulate muscle performance. Recent research on the musculature of squid suggests that the mechanisms of muscle specialization in cephalopods may differ from those documented in vertebrates. Muscle diversity in the development and the evolution of cephalopods appears to be characterized by modulation of the dimensions of the myofilaments, in contrast to the relatively fixed myofilament dimensions of vertebrate muscle. In addition, the arrangement of the myofilaments may also be altered, as has been observed in the extensor muscle fibres of the prey capture tentacles of squid and cuttlefish, which show cross-striation and thus differ from the obliquely striated pattern of most cephalopod locomotor muscle fibres. Although biochemical specializations that reflect differences in aerobic capacity have been documented previously for specific layers of the mantle muscle of squid,comparison of protein profiles of myofilament preparations from the fast cross-striated tentacle fibres and slow obliquely striated fibres from the arms has revealed remarkably few differences in myofilament lattice proteins. In particular, previous studies using a variety of SDS-PAGE techniques and peptide mapping of the myosin heavy chain were unable to resolve differences in the myosin light and heavy chains. Since these techniques cannot exclude the presence of a highly conserved variant that differs in only a few amino acids, in this study semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of myosin heavy chain messenger RNAs (mRNAs) from the cross-striated tentacle and obliquely striated arm muscle fibres was conducted. This analysis showed that a previously reported alternatively spliced isoform of the squid myosin motor domain is present only in low abundance in both muscle types and therefore differential expression of the two myosins cannot explain the difference in contractile properties. It thus appears that modulation of the contractile properties of the musculature of squid and other cephalopods occurs primarily through variation in the arrangement and dimensions of the myofilaments.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3