Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants

Author:

She Wenjing1,Grimanelli Daniel2,Rutowicz Kinga3,Whitehead Marek W. J.1,Puzio Marcin3,Kotliński Maciej3,Jerzmanowski Andrzej3,Baroux Célia1

Affiliation:

1. Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.

2. Institut de Recherche pour le Développement (UMR 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier II, 911 Avenue Agropolis, 34394 Montpellier, France.

3. Laboratory of Plant Molecular Biology, Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.

Abstract

The life cycle of flowering plants is marked by several post-embryonic developmental transitions during which novel cell fates are established. Notably, the reproductive lineages are first formed during flower development. The differentiation of spore mother cells, which are destined for meiosis, marks the somatic-to-reproductive fate transition. Meiosis entails the formation of the haploid multicellular gametophytes, from which the gametes are derived, and during which epigenetic reprogramming takes place. Here we show that in the Arabidopsis female megaspore mother cell (MMC), cell fate transition is accompanied by large-scale chromatin reprogramming that is likely to establish an epigenetic and transcriptional status distinct from that of the surrounding somatic niche. Reprogramming is characterized by chromatin decondensation, reduction in heterochromatin, depletion of linker histones, changes in core histone variants and in histone modification landscapes. From the analysis of mutants in which the gametophyte fate is either expressed ectopically or compromised, we infer that chromatin reprogramming in the MMC is likely to contribute to establishing postmeiotic competence to the development of the pluripotent gametophyte. Thus, as in primordial germ cells of animals, the somatic-to-reproductive cell fate transition in plants entails large-scale epigenetic reprogramming.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3