Temperature fluctuations and estrone sulfate affect gene expression via different mechanisms to promote female development in a species with temperature-dependent sex determination

Author:

Marroquín-Flores Rosario A.1ORCID,Paitz Ryan T.2ORCID,Bowden Rachel M.2ORCID

Affiliation:

1. Texas Tech University 1 Department of Biological Sciences , , Lubbock, TX 79409 , USA

2. School of Biological Sciences, Illinois State University 2 , Normal, IL 61790 , USA

Abstract

ABSTRACT Variation in developmental conditions can affect a variety of embryonic processes and shape a number of phenotypic characteristics that can affect offspring throughout their lives. This is particularly true of oviparous species where development typically occurs outside of the female, and studies have shown that traits such as survival and behavior can be altered by both temperature and exposure to steroid hormones during development. In species with temperature-dependent sex determination (TSD), the fate of gonadal development can be affected by temperature and by maternal estrogens present in the egg at oviposition, and there is evidence that these factors can affect gene expression patterns. Here, we explored how thermal fluctuations and exposure to an estrogen metabolite, estrone sulfate, affect the expression of several genes known to be involved in sexual differentiation: Kdm6b, Dmrt1, Sox9, FoxL2 and Cyp19A1. We found that most of the genes responded to both temperature and estrone sulfate exposure, but that the responses to these factors were not identical, in that estrone sulfate effects occur downstream of temperature effects. Our findings demonstrate that conjugated hormones such as estrone sulfate are capable of influencing temperature-dependent pathways to potentially alter how embryos respond to temperature, and highlight the importance of studying the interaction of maternal hormone and temperature effects.

Funder

National Science Foundation

Beta Lambda Phi Sigma Biological Honor Society

Illinois State University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sex determination and differentiation in reptiles;Hormones and Reproduction of Vertebrates, Volume 3;2024

2. How do maternal androgens and estrogens affect sex determination in reptiles with temperature‐dependent sex?;Development, Growth & Differentiation;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3