Recovery of C-starts, equilibrium and targeted feeding after whole spinal cord crush in the adult goldfishCarassius auratus

Author:

Zottoli S. J.1,Freemer M. M.1

Affiliation:

1. Department of Biology, Williams College, Williamstown, MA 01267,USA

Abstract

SUMMARYCentral nervous system neurons of many adult teleost fish are capable of regrowth across spinal cord lesions, which may result in behavioral recovery of swimming. Since there have been few, if any, studies that examine the return of behaviors other than swimming, we provide a quantitative analysis of the recovery of C-starts that occur in adult goldfish after spinal cord injury. In addition, we include a qualitative analysis of the return of targeted feeding and equilibrium. Whole spinal cord crushes near the junction of the brain and spinal cord [spinomedullary level (SML)] were made in 45 experimental fish. Eight sham-operated goldfish served as controls for the effects of the surgery procedures alone. After spinal cord crush and recovery from the anesthetic, experimental fish lay on their sides with no movement caudal to the wound. The fish were monitored for the return of behaviors for up to 190 days postoperatively. Twenty-five fish survived the course of this study. Of these fish, 12 regained equilibrium and C-starts, two regained equilibrium but not C-starts, and 11 did not regain equilibrium (one of these did display a C-start). Twenty-two of the 25 experimental fish that survived the 190 days were able to target food from the water surface. Quantitative analysis of recovered C-starts in this study revealed that the probability of eliciting the response is reduced, that latencies from stimulus to response are longer and that movement parameters (i.e. angles, distance and velocity)are reduced compared with those of sham-operated control animals for up to 190 days postoperatively. The recovery of C-starts, equilibrium and targeted feeding was due to re-growth across the wound site, since re-crushing the spinal cord at the SML resulted in the loss of these behaviors. Mauthner cells are known to initiate C-starts in goldfish. Since the majority of M-axons that regrow across a crush wound associate with an inappropriate pathway (i.e. the first ventral root), it is unlikely that these cells play a major role in the return of C-starts. We propose that regeneration of Mauthner cell homologues across the wound site is responsible for the recovery of most C-starts. The identifiability of the M-cell and its homologues provides a unique opportunity to analyze the mechanisms underlying behavioral recovery at the cellular level.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3