Ems and Nkx6 are central regulators in dorsoventral patterning of the Drosophila brain

Author:

Seibert Janina1,Volland Dagmar1,Urbach Rolf1

Affiliation:

1. Institute of Genetics, University of Mainz, D-55099 Mainz, Germany

Abstract

In central nervous system development, the identity of neural stem cells (neuroblasts) critically depends on the precise spatial patterning of the neuroectoderm in the dorsoventral (DV) axis. Here, we uncover a novel gene regulatory network underlying DV patterning in the Drosophila brain, and show that the cephalic gap gene empty spiracles (ems) and the Nk6 homeobox gene (Nkx6) encode key regulators. The regulatory network implicates novel interactions between these and the evolutionarily conserved homeobox genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh). We show that Msh cross-repressively interacts with Nkx6 to sustain the boundary between dorsal and intermediate neuroectoderm in the tritocerebrum (TC) and deutocerebrum (DC), and that Vnd positively regulates Nkx6 by suppressing Msh. Remarkably, Ems is required to activate Nkx6, ind and msh in the TC and DC, whereas later Nkx6 and Ind act together to repress ems in the intermediate DC. Furthermore, the initially overlapping expression of Ems and Vnd in the ventral/intermediate TC and DC resolves into complementary expression patterns due to cross-repressive interaction. These results indicate that the anteroposterior patterning gene ems controls the expression of DV genes, and vice versa. In addition, in contrast to regulation in the ventral nerve cord, cross-inhibition between homeodomain factors (between Ems and Vnd, and between Nkx6 and Msh) is essential for the establishment and maintenance of discrete DV gene expression domains in the Drosophila brain. This resembles the mutually repressive relationship between pairs of homeodomain proteins that pattern the vertebrate neural tube in the DV axis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3