Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem

Author:

Reinhardt Didier1,Frenz Martin2,Mandel Therese1,Kuhlemeier Cris1

Affiliation:

1. Institute of Plant Sciences, University of Berne, Switzerland

2. Institute of Applied Physics, University of Berne, Switzerland

Abstract

Plants exhibit life-long organogenic and histogenic activity in a specialised organ, the shoot apical meristem. Leaves and flowers are formed within the ring-shaped peripheral zone, which surrounds the central zone, the site of the stem cells. We have undertaken a series of high-precision laser ablation and microsurgical tissue removal experiments to test the functions of different parts of the tomato meristem, and to reveal their interactions. Ablation of the central zone led to ectopic expression of the WUSCHELgene at the periphery, followed by the establishment of a new meristem centre. After the ablation of the central zone, organ formation continued without a lag. Thus, the central zone does not participate in organogenesis, except as the ultimate source of founder cells. Microsurgical removal of the external L1 layer induced periclinal cell divisions and terminal differentiation in the subtending layers. In addition, no organs were initiated in areas devoid of L1, demonstrating an important role of the L1 in organogenesis. L1 ablation had only local effects, an observation that is difficult to reconcile with phyllotaxis theories that invoke physical tension operating within the meristem as a whole. Finally, regeneration of L1 cells was never observed after ablation. This shows that while the zones of the meristem show a remarkable capacity to regenerate after interference, elimination of the L1layer is irreparable and causes terminal differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3