twin, aCCR4homolog, regulates cyclin poly(A) tail length to permitDrosophilaoogenesis

Author:

Morris Jason Z.1,Hong Amy2,Lilly Mary A.2,Lehmann Ruth1

Affiliation:

1. Developmental Genetics Program, Department of Cell Biology, The Skirball Institute and Howard Hughes Medical Institute, NYU School of Medicine, New York, NY 10016, USA

2. Cell Biology and Metabolism Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892,USA

Abstract

Cyclins regulate progression through the cell cycle. Control of cyclin levels is essential in Drosophila oogenesis for the four synchronous divisions that generate the 16 cell germ line cyst and for ensuring that one cell in each cyst, the oocyte, is arrested in meiosis, while the remaining fifteen cells become polyploid nurse cells. Changes in cyclin levels could be achieved by regulating transcription, translation or protein stability. The proteasome limits cyclin protein levels in the Drosophila ovary, but the mechanisms regulating RNA turnover or translation remain largely unclear. Here, we report the identification of twin, a homolog of the yeast CCR4 deadenylase. We show that twin is important for the number and synchrony of cyst divisions and oocyte fate. Consistent with the deadenylase activity of CCR4 in yeast, our data suggest that Twin controls germ line cyst development by regulating poly(A) tail lengths of several targets including Cyclin A (CycA) RNA. twin mutants exhibit very low expression of Bag-of-marbles (Bam), a regulator of cyst division, indicating that Twin/Ccr4 activity is necessary for wild-type Bam expression. Lowering the levels of CycA or increasing the levels of Bam suppresses the defects we observe in twin ovaries, implicating CycA and Bam as downstream effectors of Twin. We propose that Twin/Ccr4 functions during early oogenesis to coordinate cyst division, oocyte fate specification and egg chamber maturation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3