The neuronal basis of a sensory analyser, the acridid movement detector system. II. response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD

Author:

O'shea M.,Rowell C. H.

Abstract

No dendritic spikes occur in the input fan of the lobular giant movement detector (LGMD) neurone. The action potentials are initiated at the point of thickening of the axon, which therefore represents the site of convergence of the retinotopic projection in the MD system. Previous work has shown that the site of decrement in response to repetitive visual stimulation is distal to this point. No change in spiking threshold in the LGMD could be demonstrated, and decrement in the number of LGMD action potentials is completely explained by the observed decrement of EPSPs recorded in the LGMD input dendritic fan. Possible postsynaptic mechanisms which might affect EPSP amplitude are excluded experimentally or shown to be improbable. Latency measurements during electrical stimulation in the second chiasma (which produces a decrementing EPSP in the fan) indicate that the pathway from the chiasma afferents to the LGMD fan is probably monosynaptic. By exclusion, the site of decrement appears to be located at the presynaptic terminal of that synapse. Generalization of habituation of the response to ON and OFF stimuli is demonstrated, showing that the presynaptic neurone at the labile synapse is an ON/OFF unit. The greater part of the previously described sensitivity gradient on the retina, relative to the MD response, appears to be explicable by the geometry of the LGMD fan and of the retinotopic projection. We conclude that the LGMD is fed by a homogeneous population of ON/OFF units running in the second optic chiasma, which form labile synapses on the input fan.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3