Ras signaling and its effector RREB1 are required for the dissociation of MEE cells in palatogenesis

Author:

Inubushi Toshihiro1ORCID,Fujiwara Ayaka2,Hirose Takumi1,Aoyama Gozo1,Uchihashi Toshihiro2,Yoshida Naoki1,Shiraishi Yuki1,Usami Yu3,Kurosaka Hiroshi1,Toyosawa Satoru3,Tanaka Susumu2,Watabe Tetsuro4,Kogo Mikihiko2,Yamashiro Takashi1ORCID

Affiliation:

1. Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan

2. First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan

3. Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan

4. Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan

Abstract

Cleft palate is one of the major congenital craniofacial birth defects. The etiology underlying the pathogenesis of cleft palate has largely remained unelucidated. Dissociation of the medial edge epithelium (MEE) at the contacting region of palatal shelves and subsequent migration or apoptosis of MEE cells is required for the proper MEE removal. Ras Responsive Element Binding Protein 1 (RREB1), a RAS transcriptional effector, has recently been shown to play a crucial role in developmental EMT, in which loss of epithelial characteristics is an initial step, during mid-gastrulation of embryonic development. Interestingly, the involvement of RREB1 in cleft palate has been indicated in humans. Here, we demonstrated that pan-Ras inhibitor prevents the dissociation of MEE during palatal fusion. Rreb1 is expressed in the palatal epithelium during palatal fusion, and knockdown of Rreb1 in palatal organ culture resulted in palatal fusion defects by inhibiting the dissociation of MEE cells. Our present findings provide evidence that RREB1-mediated Ras signaling is required during palatal fusion. Aberrant RREB1-mediated Ras signaling might be involved in the pathogenesis of cleft palate.

Funder

JSPS

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3