Elevated murine HB-EGF confers sensitivity to diphtheria toxin in EGFR-mutant lung adenocarcinoma

Author:

Robles-Oteiza Camila1ORCID,Ayeni Deborah2ORCID,Levy Stellar3,Homer Robert J.2,Kaech Susan M.14ORCID,Politi Katerina235ORCID

Affiliation:

1. Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA

2. Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA

3. Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA

4. NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA 92037, USA

5. Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06510, USA

Abstract

ABSTRACT Conditional ablation of defined cell populations in vivo can be achieved using genetically engineered mice in which the human diphtheria toxin (DT) receptor (DTR) is placed under control of a murine tissue-specific promotor, such that delivery of DT selectively ablates cells expressing this high-affinity human DTR; cells expressing only the endogenous low-affinity mouse DTR are assumed to be unaffected. Surprisingly, we found that systemic administration of DT induced rapid regression of murine lung adenocarcinomas that express human mutant EGFR in the absence of a transgenic allele containing human DTR. DT enzymatic activity was required for tumor regression, and mutant EGFR-expressing tumor cells were the primary target of DT toxicity. In FVB mice, EGFR-mutant tumors upregulated expression of HBEGF, which is the DTR in mice and humans. HBEGF blockade with the enzymatically inactive DT mutant CRM197 partially abrogated tumor regression induced by DT. These results suggest that elevated expression of murine HBEGF, i.e. the low-affinity DTR, confers sensitivity to DT in EGFR-mutant tumors, demonstrating a biological effect of DT in mice lacking transgenic DTR alleles and highlighting a unique vulnerability of EGFR-mutant lung cancers.

Funder

National Cancer Institute

Gruber Foundation

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacteria-based nanodrug for anticancer therapy;Pharmacological Research;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3