ILDR1 deficiency causes degeneration of cochlear outer hair cells and disrupts the structure of the organ of Corti: a mouse model for human DFNB42

Author:

Sang Qing12,Li Wen3,Xu Yao2,Qu Ronggui2,Xu Zhigang4,Feng Ruizhi2,Jin Li1,He Lin25,Li Huawei3,Wang Lei12

Affiliation:

1. State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200032, PR China

2. Institute of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai, 200032, PR China

3. Department of Otolaryngology, Eye & ENT hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, PR China

4. School of Life Sciences, Shandong University, Shandong, China

5. Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China

Abstract

Immunoglobulin-like domain containing receptor 1 (ILDR1) is a poorly characterized gene that was first identified in lymphoma cells. Mutations in ILDR1 are responsible for DFNB42, but the pathogenesis of hearing loss caused by ILDR1 mutations remains to be elucidated. To explore the role of ILDR1 in hearing, we created Ildr1 knockout mice. In heterozygous mice, ILDR1 expression was found in outer hair cells (OHCs) and inner hair cells (IHCs) of the organ of Corti. ILDR1-deficient mice are profoundly deaf by postnatal day 21 (P21). No significant difference was observed in the supporting cells and IHCs of ILDR1-deficient mice, but progressive degeneration of OHCs occurred at P15 and disruption of the tunnel running through the organ of Corti was noticeable at P21. By P28, there were no OHCs visible in any of the turns of the organ of Corti, and the tunnel of the organ of Corti was entirely destroyed. ILDR1 deficiency affects expression of tricellulin in vivo, and this provides a possible explanation to hearing loss. To further elucidate the mechanism of deafness related to ILDR1 deficiency, we pursued a differential proteomic approach to comprehensively assess differential protein expression in the cochleae of Ildr1+/− and Ildr1−/− mice at P21. Altogether, 708 proteins were up-regulated (fold change >1.5) and 114 proteins were down-regulated (fold change <0.5) in the Ildr1−/− mice compared with Ildr1+/− mice. Gene ontology classification indicated that a number of differentially expressed proteins are involved in cell adhesion, protein and vesicle-mediated transport, cell death, membrane organization, and cellular homeostasis. A few of these proteins are closely related to hearing development. Taken together, our data suggest that ILDR1 is important for the survival of OHCs and provide novel insights into the pathogenesis of human deafness DFNB42 deafness.

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3