Affiliation:
1. Department of Biology, Ithaca College, Ithaca, NY 14850,USA
Abstract
SUMMARY
Several gastropod molluscs produce glues that are interesting because they are dilute gels and yet they produce strong adhesion. Specific glue proteins have been identified that play a central role in this adhesion, possibly by crosslinking other polymers in the gel. This study investigates the role of metals in the action of these glue proteins. Atomic absorption spectrometry showed that glue from the slug Arion subfuscus contains substantial quantities of zinc (46±7 p.p.m. and 189±80 p.p.m. in two different sets of experiments) and also iron, copper and manganese (2–7 p.p.m.). Iron-specific staining demonstrates that iron is bound specifically to the 15 kDa glue protein. Several approaches were used to show that these metals have important functional effects. Adding iron or copper to dissolved glue causes the proteins to precipitate rapidly, although zinc has no effect. Removing iron and related transition metals with a chelator during secretion of the glue causes a sixfold increase in the solubility of the glue. Once the glue has set, however, removing these metals has no effect. Finally, the gel-stiffening activity of the glue proteins was measured in the presence and absence of the chelator. The chelator eliminated the gel-stiffening effect of the proteins, suggesting that transition metals were necessary for the proteins to act on the gel. Thus, the glue contains transition metals and these metals play an essential role in glue function.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献