Membrane remodeling in clathrin-mediated endocytosis

Author:

Haucke Volker12ORCID,Kozlov Michael M.3ORCID

Affiliation:

1. Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany

2. Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Takustrasse 3, 14195 Berlin, Germany

3. Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

ABSTRACT Clathrin-mediated endocytosis is an essential cellular mechanism by which all eukaryotic cells regulate their plasma membrane composition to control processes ranging from cell signaling to adhesion, migration and morphogenesis. The formation of endocytic vesicles and tubules involves extensive protein-mediated remodeling of the plasma membrane that is organized in space and time by protein–protein and protein–phospholipid interactions. Recent studies combining high-resolution imaging with genetic manipulations of the endocytic machinery and with theoretical approaches have led to novel multifaceted phenomenological data of the temporal and spatial organization of the endocytic reaction. This gave rise to various – often conflicting – models as to how endocytic proteins and their association with lipids regulate the endocytic protein choreography to reshape the plasma membrane. In this Review, we discuss these findings in light of the hypothesis that endocytic membrane remodeling may be determined by an interplay between protein–protein interactions, the ability of proteins to generate and sense membrane curvature, and the ability of lipids to stabilize and reinforce the generated membrane shape through adopting their lateral distribution to the local membrane curvature.

Funder

Agency Deutsche Forschungsgemeinschaft

Israel Science Foundation

European Union

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3