Muscle structural assembly and functional consequences

Author:

Narici Marco1,Franchi Martino1,Maganaris Constantinos2

Affiliation:

1. University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Faculty of Medicine and Health Sciences, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Derby Royal Hospital, Derby DE22 3DT, UK

2. Research Institute for Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK

Abstract

ABSTRACT The relationship between muscle structure and function has been a matter of investigation since the Renaissance period. Extensive use of anatomical dissections and the introduction of the scientific method enabled early scholars to lay the foundations of muscle physiology and biomechanics. Progression of knowledge in these disciplines led to the current understanding that muscle architecture, together with muscle fibre contractile properties, has a major influence on muscle mechanical properties. Recently, advances in laser diffraction, optical microendoscopy and ultrasonography have enabled in vivo investigations into the behaviour of human muscle fascicles and sarcomeres with varying joint angle and muscle contraction intensity. With these technologies it has become possible to identify the length region over which fascicles and sarcomeres develop maximum isometric force in vivo as well as the operating ranges of fascicles and sarcomeres during real-life activities such as walking. Also, greater insights into the remodelling of muscle architecture in response to overloading and unloading, and in ageing, have been obtained by the use of ultrasonography; these have led to the identification of clinical biomarkers of disuse atrophy and sarcopenia. Recent evidence also shows that the pattern of muscle hypertrophy in response to chronic loading is contraction-mode dependent (eccentric versus concentric), as similar gains in muscle mass, but through differing addition of sarcomeres in series and in parallel (as indirectly inferred from changes in fascicle length and pennation angle), have been found. These innovative observations prompted a new set of investigations into the molecular mechanisms regulating this contraction-specific muscle growth.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3