Extreme blood boosting capacity of an Antarctic fish represents an adaptation to life in a sub-zero environment

Author:

Brijs Jeroen1ORCID,Axelsson Michael2,Rosengren Malin3,Jutfelt Fredrik4ORCID,Gräns Albin1

Affiliation:

1. Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg, 405 30, Sweden

2. Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden

3. Department of Marine Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden

4. Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway

Abstract

Blood doping, the practice of boosting the oxygen carrying capacity of blood, is an illegal strategy used by human athletes to enhance aerobic capacity and athletic performance. Interestingly, the practice of boosting blood oxygen carrying capacity is also naturally prevalent in the animal kingdom via the splenic release of stored erythrocytes. Here we demonstrate that an Antarctic notothenioid fish, the bald notothen (Pagothenia borchgrevinki), is a master of this practice. Due to the sub-zero environment these fish inhabit, they sequester a large proportion of erythrocytes in the spleen during times of inactivity to reduce the energetic and physiological costs associated with continuously pumping highly viscous blood around the body. However, in response to metabolically demanding situations (i.e. exercise and feeding), these fish contract the spleen to eject stored erythrocytes into circulation, which boosts blood oxygen carrying capacity by up to 207% (c.f. exercise-induced increases of ∼40-60% in a range of other vertebrates and ∼5-25% in blood-doping athletes). By evaluating cardiorespiratory differences between splenectomized (unable to release erythrocytes from the spleen) and sham-operated individuals, we demonstrate the metabolic benefits (i.e. aerobic scope increased 103%) and the cardiovascular trade-offs (i.e. ventral aortic blood pressure and cardiac workload increased 12% and 30%, respectively) associated with the splenic blood boosting strategy. In conclusion, this strategy provides bald notothens with an extraordinary facultative aerobic scope that enables an active lifestyle in the extreme Antarctic marine environment, while minimizing the energetic and physiological costs of transporting highly viscous blood during times of reduced energetic demand.

Funder

National Science Foundation

Polarforskningssekretariatet

Vetenskapsrådet

Helge Ax:son Johnsons Stiftelse

Kungl. Vetenskaps- och Vitterhets-Samhället i Göteborg

Stiftelserna Wilhelm och Martina Lundgrens

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3