Frank-Starling mechanism and short-term adjustment of cardiac flow

Author:

Chaui-Berlinck José Guilherme1ORCID,Monteiro Luiz Henrique Alves23

Affiliation:

1. Department of Physiology – Energetics and Theoretical Physiology Laboratory, Biosciences Institute - University of São Paulo, Rua do Matão, 101; CEP: 05508-090, São Paulo – SP/Brasil

2. Escola de Engenharia da Universidade Presbiteriana Mackenzie, São Paulo – SP/Brasil

3. Escola Politécnica da Universidade de São Paulo, São Paulo – SP/Brasil

Abstract

The Frank-Starling Law of the heart is a filling-force mechanism (FFm), a positive relationship between the distension of a ventricular chamber and its force of ejection, and such a mechanism is found across all the studied vertebrate lineages. The functioning of the cardiovascular system is usually described by means of the cardiac and vascular functions, the former related to the contractility of the heart and the latter related to the after-load imposed to the ventricle. The crossing of these functions is the so-called operation point, and the FFm is supposed to play a stabilizing role for the short-term variations in the working of the system. In the present study, we analyze whether the FFm is truly responsible for such a stability within two different settings: one-ventricle and two-ventricle hearts. To approach the query, we linearized the region around an arbitrary operation point and put forward a dynamical system of differential equations to describe the relationship among volumes in face of blood flows governed by pressure differences between compartments. Our results show that the FFm is not necessary to give stability to an operation point. Thus, what forces might have selected and maintained such a mechanism in all vertebrates? The present results indicate three different and complementary roles for the filling-force mechanism: (1) it decreases the demands of a central controlling system over the circulatory system; (2) it smooths out perturbations in volumes; and (3) it guarantees faster transitions between operation points, i.e., it allows for rapid changes in cardiac output.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3