Body size, energy metabolism and lifespan

Author:

Speakman John R.1

Affiliation:

1. Aberdeen Centre for Energy regulation and Obesity (ACERO), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland,UK and ACERO, Division of Energy Balance and Obesity, Rowett Research Institute, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK

Abstract

SUMMARYBigger animals live longer. The scaling exponent for the relationship between lifespan and body mass is between 0.15 and 0.3. Bigger animals also expend more energy, and the scaling exponent for the relationship of resting metabolic rate (RMR) to body mass lies somewhere between 0.66 and 0.8. Mass-specific RMR therefore scales with a corresponding exponent between -0.2 and -0.33. Because the exponents for mass-specific RMR are close to the exponents for lifespan, but have opposite signs, their product (the mass-specific expenditure of energy per lifespan) is independent of body mass(exponent between -0.08 and 0.08). This means that across species a gram of tissue on average expends about the same amount of energy before it dies regardless of whether that tissue is located in a shrew, a cow, an elephant or a whale. This fact led to the notion that ageing and lifespan are processes regulated by energy metabolism rates and that elevating metabolism will be associated with premature mortality - the rate of living theory.The free-radical theory of ageing provides a potential mechanism that links metabolism to ageing phenomena, since oxygen free radicals are formed as a by-product of oxidative phosphorylation. Despite this potential synergy in these theoretical approaches, the free-radical theory has grown in stature while the rate of living theory has fallen into disrepute. This is primarily because comparisons made across classes (for example, between birds and mammals) do not conform to the expectations, and even within classes there is substantial interspecific variability in the mass-specific expenditure of energy per lifespan. Using interspecific data to test the rate of living hypothesis is, however, confused by several major problems. For example,appeals that the resultant lifetime expenditure of energy per gram of tissue is `too variable' depend on the biological significance rather than the statistical significance of the variation observed. Moreover, maximum lifespan is not a good marker of ageing and RMR is not a good measure of total energy metabolism. Analysis of residual lifespan against residual RMR reveals no significant relationship. However, this is still based on RMR.A novel comparison using daily energy expenditure (DEE), rather than BMR,suggests that lifetime expenditure of energy per gram of tissue is NOT independent of body mass, and that tissue in smaller animals expends more energy before expiring than tissue in larger animals. Some of the residual variation in this relationship in mammals is explained by ambient temperature. In addition there is a significant negative relationship between residual lifespan and residual daily energy expenditure in mammals. A potentially much better model to explore the links of body size, metabolism and ageing is to examine the intraspecific links. These studies have generated some data that support the original rate of living theory and other data that conflict. In particular several studies have shown that manipulating animals to expend more or less energy generate the expected effects on lifespan (particularly when the subjects are ectotherms). However, smaller individuals with higher rates of metabolism live longer than their slower, larger conspecifics.An addition to these confused observations has been the recent suggestion that under some circumstances we might expect mitochondria to produce fewer free radicals when metabolism is higher - particularly when they are uncoupled. These new ideas concerning the manner in which mitochondria generate free radicals as a function of metabolism shed some light on the complexity of observations linking body size, metabolism and lifespan.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference139 articles.

1. Acuna-Castroviejo, D., Martin, M., Macias, M., et al.(2001). Melatonin, mitochondria, and cellular bioenergetics. J. Pineal Res.30,65-74.

2. Aigaki, T., Kaneuchi, T., Matsuo, T., et al.(2003). Genetic bases of oxidative stress resistance and life span in Drosophila. J. Clin. Biochem. Nutr.34, 77-83.

3. Aigaki, T., Seong, K. H. and Matsuo, T. (2002). Longevity determination genes in Drosophila melanogaster. Mech. Age. Dev.123,1531-1541.

4. Arechaga, I., Ledesma, A. and Rial, E. (2001). The mitochondrial uncoupling protein UCP1: A gated pore. IUBMB Life52,165-173.

5. Aristotle (350 BC). On Longevity and the Shortness of Life. Translated by G. R. T. Ross (1911), pp. 1-7. Adelaide: ebooks@adelaide.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3