QUIRKY interacts with STRUBBELIG and PAL OF QUIRKY to regulate cell growth anisotropy during Arabidopsis gynoecium development

Author:

Trehin Christophe1,Schrempp Sandra1,Chauvet Aurélie1,Berne-Dedieu Annick1,Thierry Anne-Marie1,Faure Jean-Emmanuel1,Negrutiu Ioan1,Morel Patrice1

Affiliation:

1. Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69364, Lyon Cedex 07, France.

Abstract

Organ morphogenesis largely relies on cell division and elongation, which need to be both coordinated between cells and orchestrated with cytoskeleton dynamics. However, components that bridge the biological signals and the effectors that define cell shape remain poorly described. We have addressed this issue through the functional characterisation of QUIRKY (QKY), previously isolated as being involved in the STRUBBELIG (SUB) genetic pathway that controls cell-cell communication and organ morphogenesis in Arabidopsis. QKY encodes a protein containing multiple C2 domains and transmembrane regions, and SUB encodes an atypical LRR-receptor-like kinase. We show that twisting of the gynoecium observed in qky results from the abnormal division pattern and anisotropic growth of clustered cells arranged sporadically along the gynoecium. Moreover, the cortical microtubule (CMT) network of these cells is disorganised. A cross to botero, a katanin mutant in which the normal orientation of CMTs and anisotropic cell expansion are impaired, strongly reduces silique deviation, reinforcing the hypothesis of a role for QKY in CMT-mediated cell growth anisotropy. We also show that QKY is localised at the plasma membrane and functions in a multiprotein complex that includes SUB and PAL OF QUIRKY (POQ), a previously uncharacterised PB1-domain-containing protein that localises both at the plasma membrane and in intracellular compartments. Our data indicate that QKY and its interactors play central roles linking together cell-cell communication and cellular growth.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference79 articles.

1. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis;Abe;Development,2003

2. Flower development;Alvarez-Buylla;Arabidopsis Book,2010

3. Dysferlin and the plasma membrane repair in muscular dystrophy;Bansal;Trends Cell Biol.,2004

4. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis;Bichet;Plant J.,2001

5. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation;Burk;Plant Cell,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3