Natural Variability in the Length of Thin and Thick Filaments in Single Fibres From a Crab, Portunus Depurator

Author:

FRANZINI-ARMSTRONG CLARA1

Affiliation:

1. Department of Physiology, University College London, Gower Street, London, W.C. 1, England; Department of Physiology, The University of Rochester Medical Center, Rochester, N.Y. 14620

Abstract

The carpopodite flexor of the walking legs of the crab Portunus depurator contains fibres belonging to 3 groups. These are characterized by differences in the cross-striation spacing. Fibres having sarcomeres of approximately 4, 5 and 7 µm are here called short, medium and long sarcomere types, respectively. Within individual fibres belonging to any of the groups the length of the A band is not constant. Up to 25 % length differences have been measured in A bands belonging even to the same fibril. The bridge-free regions of the thick filaments are not always in the centre, so that the filaments are often asymmetric. Analogally, the L line, resulting from the alignment of the bridge-free regions of the thick filaments, may be asymmetrically placed in the Z band. The length of the bridge-free region in crab thick filaments is 60 nm, while the corresponding region in vertebrate thick filaments is 120 nm. This is discussed in terms of a possible model of the filament. The length of the thin filaments is proportional to that of the thick filaments in the corresponding portion of the sarcomere. When two A bands of different length occur in adjacent positions along the fibril, the Z line is not a centre of symmetry. The ratio of thin to thick filament number is variable in individual fibrils. In general, the ratio is higher in the medium sarcomere type fibres than in the short sarcomere type. Stretched and shorter portions of single fibres of the medium type have been examined and the A-band length populations compared. From such a study it can be deduced that passive length changes occur in crab fibres by sliding of thin and thick filaments.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3