Swing-leg retraction: a simple control model for stable running

Author:

Seyfarth André12,Geyer Hartmut12,Herr Hugh134

Affiliation:

1. Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

2. ParaCare Laboratory, Balgrist Hospital, University Zurich, CH-8008 Zurich,Switzerland

3. Harvard/MIT Division of Health Sciences and Technology, Cambridge, MA 02139,USA

4. Department of Physical Medicine and Rehabilitation, Harvard Medical School,Spaulding Rehabilitation Hospital, Boston, MA 02114, USA

Abstract

SUMMARY In running, the spring-like axial behavior of stance limbs is a well-known and remarkably general feature. Here we consider how the rotational behavior of limbs affects running stability. It is commonly observed that running animals retract their limbs just prior to ground contact, moving each foot rearward towards the ground. In this study, we employ a conservative spring-mass model to test the effects of swing-leg retraction on running stability. A feed-forward control scheme is applied where the swing-leg is retracted at constant angular velocity throughout the second half of the swing phase. The control scheme allows the spring-mass system to automatically adapt the angle of attack in response to disturbances in forward speed and stance-limb stiffness. Using a return map to investigate system stability, we propose an optimal swing-leg retraction model for the stabilization of flight phase apex height. The results of this study indicate that swing-leg retraction significantly improves the stability of spring-mass running,suggesting that swing-phase limb dynamics may play an important role in the stabilization of running animals.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference19 articles.

1. Blickhan, R. (1989). The spring-mass model for running and hopping. J. Biomech.22,1217-1227.

2. Brown, I. E., Scott, S. H. and Loeb, G. E.(1995). `Preflexes' – programmable, high-gain, zero-delay intrinsic responses to perturbed musculoskeletal systems. Soc. Neurosci. Abstr.21,562.9.

3. Cavagna, G. A., Saibene, F. P. and Margaria, R.(1964). Mechanical work in running. J. Appl. Physiol.19,249-256.

4. De Wit, B., De Clercq, D. and Aerts, P. (2000). Biomechanical analysis of the stance phase during barefoot and shod running. J. Biomech.33,269-278.

5. Geyer, H., Seyfarth, A. and Blickhan, R. (in press). Positive force feedback in bouncing gaits. Proc. R. Soc. Lond. B.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3