klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division

Author:

Xiao Qi1,Komori Hideyuki2,Lee Cheng-Yu1342

Affiliation:

1. Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA

2. Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA

3. Program in Cellular and Molecular Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA

4. Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Asymmetric stem cell division balances maintenance of the stem cell pool and generation of diverse cell types by simultaneously allowing one daughter progeny to maintain a stem cell fate and its sibling to acquire a progenitor cell identity. A progenitor cell possesses restricted developmental potential, and defects in the regulation of progenitor cell potential can directly impinge on the maintenance of homeostasis and contribute to tumor initiation. Despite their importance, the molecular mechanisms underlying the precise regulation of restricted developmental potential in progenitor cells remain largely unknown. We used the type II neural stem cell (neuroblast) lineage in Drosophila larval brain as a genetic model system to investigate how an intermediate neural progenitor (INP) cell acquires restricted developmental potential. We identify the transcription factor Klumpfuss (Klu) as distinguishing a type II neuroblast from an INP in larval brains. klu functions to maintain the identity of type II neuroblasts, and klu mutant larval brains show progressive loss of type II neuroblasts due to premature differentiation. Consistently, Klu protein is detected in type II neuroblasts but is undetectable in immature INPs. Misexpression of klu triggers immature INPs to revert to type II neuroblasts. In larval brains lacking brain tumor function or exhibiting constitutively activated Notch signaling, removal of klu function prevents the reversion of immature INPs. These results led us to propose that multiple mechanisms converge to exert precise control of klu and distinguish a progenitor cell from its sibling stem cell during asymmetric neuroblast division.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3