Diversity, decoys and the dilution effect: how ecological communities affect disease risk

Author:

Johnson P. T. J.1,Thieltges D. W.2

Affiliation:

1. Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, Campus Box 334, Boulder, CO 80309, USA

2. Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand

Abstract

SUMMARY Growing interest in ecology has recently focused on the hypothesis that community diversity can mediate infection levels and disease (‘dilution effect’). In turn, biodiversity loss — a widespread consequence of environmental change — can indirectly promote increases in disease, including those of medical and veterinary importance. While this work has focused primarily on correlational studies involving vector-borne microparasite diseases (e.g. Lyme disease, West Nile virus), we argue that parasites with complex life cycles (e.g. helminths, protists, myxosporeans and many fungi) offer an excellent additional model in which to experimentally address mechanistic questions underlying the dilution effect. Here, we unite recent ecological research on the dilution effect in microparasites with decades of parasitological research on the decoy effect in macroparasites to explore key questions surrounding the relationship between community structure and disease. We find consistent evidence that community diversity significantly alters parasite transmission and pathology under laboratory as well as natural conditions. Empirical examples and simple transmission models highlight the diversity of mechanisms through which such changes occur, typically involving predators, parasite decoys, low competency hosts or other parasites. However, the degree of transmission reduction varies among diluting species, parasite stage, and across spatial scales, challenging efforts to make quantitative, taxon-specific predictions about disease. Taken together, this synthesis highlights the broad link between community structure and disease while underscoring the importance of mitigating ongoing changes in biological communities owing to species introductions and extirpations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3