Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system

Author:

Petrinovic Marija M.1,Duncan Carri S.1,Bourikas Dimitris2,Weinman Oliver1,Montani Laura1,Schroeter Aileen1,Maerki David3,Sommer Lukas3,Stoeckli Esther T.2,Schwab Martin E.1

Affiliation:

1. Brain Research Institute, University of Zurich and Department of Biology, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

2. Institute of Zoology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

3. Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Abstract

Wiring of the nervous system is a multi-step process involving complex interactions of the growing fibre with its tissue environment and with neighbouring fibres. Nogo-A is a membrane protein enriched in the adult central nervous system (CNS) myelin, where it restricts the capacity of axons to grow and regenerate after injury. During development, Nogo-A is also expressed by neurons but its function in this cell type is poorly known. Here, we show that neutralization of neuronal Nogo-A or Nogo-A gene ablation (KO) leads to longer neurites, increased fasciculation, and decreased branching of cultured dorsal root ganglion neurons. The same effects are seen with antibodies against the Nogo receptor complex components NgR and Lingo1, or by blocking the downstream effector Rho kinase (ROCK). In the chicken embryo, in ovo injection of anti-Nogo-A antibodies leads to aberrant innervation of the hindlimb. Genetic ablation of Nogo-A causes increased fasciculation and reduced branching of peripheral nerves in Nogo-A KO mouse embryos. Thus, Nogo-A is a developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3