Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals

Author:

van der Vinne Vincent1,Gorter Jenke A.1,Riede Sjaak J.1,Hut Roelof A.1

Affiliation:

1. Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands

Abstract

ABSTRACT Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The circadian thermo-energetics (CTE) hypothesis predicts that diurnal activity patterns reduce daily energy expenditure (DEE) compared with nocturnal activity patterns. Here, we tested the CTE hypothesis by quantifying the energetic consequences of relevant environmental factors in mice. Under natural conditions, diurnality reduces DEE by 6–10% in energetically challenged mice. Combined with night-time torpor, as observed in mice under prolonged food scarcity, DEE can be reduced by ∼20%. The dominant factor determining the energetic benefit of diurnality is thermal buffering provided by a sheltered resting location. Compared with nocturnal animals, diurnal animals encounter higher ambient temperatures during both day and night, leading to reduced thermogenesis costs in temperate climates. Analysis of weather station data shows that diurnality is energetically beneficial on almost all days of the year in a temperate climate region. Furthermore, diurnality provides energetic benefits at all investigated geographical locations on European longitudinal and latitudinal transects. The reduction of DEE by diurnality provides an ultimate explanation for temporal niche switching observed in typically nocturnal small mammals under energetically challenging conditions. Diurnality allows mammals to compensate for reductions in food availability and temperature as it reduces energetic needs. The optimal circadian organization of an animal ultimately depends on the balance between energetic consequences and other fitness consequences of the selected temporal niche.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference29 articles.

1. Thermal conductance in mammals and birds: Its dependence on body size and circadian phase;Aschoff;Comp. Biochem. Physiol. A Physiol.,1981

2. The evolution of breeding seasons;Baker,1938

3. A heat transfer analysis of animals: unifying concepts and the application of metabolism chamber data to field ecology;Bakken;J. Theor. Biol.,1976

4. Adaptive daily strategies in behavior;Daan,1981

5. Peroxiredoxins are conserved markers of circadian rhythms;Edgar;Nature,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3