Route retracing: way pointing and multiple vector memories in trail-following ants

Author:

Freas Cody A.12ORCID,Spetch Marcia L.1ORCID

Affiliation:

1. University of Alberta 1 Department of Psychology , , Edmonton, AB , Canada , T6G 2E9

2. School of Natural Sciences, Macquarie University 2 , Sydney, NSW 2109 , Australia

Abstract

ABSTRACT Maintaining positional estimates of goal locations is a fundamental task for navigating animals. Diverse animal groups, including both vertebrates and invertebrates, can accomplish this through path integration. During path integration, navigators integrate movement changes, tracking both distance and direction, to generate a spatial estimate of their start location, or global vector, allowing efficient direct return travel without retracing the outbound route. In ants, path integration is accomplished through the coupling of pedometer and celestial compass estimates. Within path integration, it has been theorized navigators may use multiple vector memories for way pointing. However, in many instances, these navigators may instead be homing via view alignment. Here, we present evidence that trail-following ants can attend to segments of their global vector to retrace their non-straight pheromone trails, without the confound of familiar views. Veromessor pergandei foragers navigate to directionally distinct intermediate sites via path integration by orienting along separate legs of their inbound route at unfamiliar locations, indicating these changes are not triggered by familiar external cues, but by vector state. These findings contrast with path integration as a singular memory estimate in ants and underscore the system's ability to way point to intermediate goals along the inbound route via multiple vector memories, akin to trapline foraging in bees visiting multiple flower patches. We discuss how reliance on non-straight pheromone-marked trails may support attending to separate vectors to remain on the pheromone rather than attempting straight-line shortcuts back to the nest.

Funder

Natural Sciences and Engineering Research Council of Canada

Macquarie University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3