Skeletal muscle atrophy occurs slowly and selectively during prolonged aestivation inCyclorana alboguttata(Günther 1867)

Author:

Mantle Beth L.1,Hudson Nicholas J.2,Harper Gregory S.2,Cramp Rebecca L.1,Franklin Craig E.1

Affiliation:

1. School of Integrative Biology, University of Queensland, St Lucia, Australia,4072

2. CSIRO Livestock Industries, St Lucia Bioscience Precinct, St Lucia, Australia,4072

Abstract

SUMMARYWe investigated the effect of prolonged immobilisation of six and nine months duration on the morphology and antioxidant biochemistry of skeletal muscles in the amphibian aestivator Cyclorana alboguttata. We hypothesised that, in the event of atrophy occurring during aestivation,larger jumping muscles were more likely to be preserved over smaller non-jumping muscles. Whole muscle mass (g), muscle cross-sectional area (CSA)(μm2), water content (%) and myofibre number (per mm2) remained unchanged in the cruralis muscle after six to nine months of aestivation; however, myofibre area (μm2) was significantly reduced. Whole muscle mass, water content, myofibre number and myofibre CSA remained unchanged in the gastrocnemius muscle after six to nine months of aestivation. However, iliofibularis dry muscle mass, whole muscle CSA and myofibre CSA was significantly reduced during aestivation. Similarly,sartorius dry muscle mass, water content and whole muscle CSA was significantly reduced during aestivation. Endogenous antioxidants were maintained at control levels throughout aestivation in all four muscles. The results suggest changes to muscle morphology during aestivation may occur when lipid reserves have been depleted and protein becomes the primary fuel substrate for preserving basal metabolic processes. Muscle atrophy as a result of this protein catabolism may be correlated with locomotor function, with smaller non-jumping muscles preferentially used as a protein source during fasting over larger jumping muscles. Higher levels of endogenous antioxidants in the jumping muscles may confer a protective advantage against oxidative damage during aestivation; however, it is not clear whether they play a role during aestivation or upon resumption of normal metabolic activity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3