Cell-cell adhesion and signal transduction duringDictyosteliumdevelopment

Author:

Coates Juliet C.1,Harwood Adrian J.2

Affiliation:

1. Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK

2. MRC Laboratory for Molecular Cell Biology and Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK

Abstract

The development of the non-metazoan eukaryote Dictyostelium discoideum displays many of the features of animal embryogenesis, including regulated cell-cell adhesion. During early development, two proteins, DdCAD-1 and csA, mediate cell-cell adhesion between amoebae as they form a loosely packed multicellular mass. The mechanism governing this process is similar to epithelial sheet sealing in animals. Although cell differentiation can occur in the absence of cell contact, regulated cell-cell adhesion is an important component of Dictyostelium morphogenesis, and a third adhesion molecule, gp150, is required for multicellular development past the aggregation stage.Cell-cell junctions that appear to be adherens junctions form during the late stages of Dictyostelium development. Although they are not essential to establish the basic multicellular body plan, these junctions are required to maintain the structural integrity of the fruiting body. The Dictyostelium β-catenin homologue Aardvark (Aar) is present in adherens junctions, which are lost in its absence. As in the case of its metazoan counterparts, Aar also has a function in cell signalling and regulates expression of the pre-spore gene psA.It is becoming clear that cell-cell adhesion is an integral part of Dictyostelium development. As in animals, cell adhesion molecules have a mechanical function and may also interact with the signal-transduction processes governing morphogenesis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3