Three different calcium wave pacemakers in ascidian eggs

Author:

Dumollard Rémi1,Sardet Christian1

Affiliation:

1. Bio Mar Cell, Unité de Biologie du Développement UMR 7009 CNRS/Paris VI, Observatoire, Station Zoologique, Villefranche sur Mer, 06230 France

Abstract

Calcium wave pacemakers in fertilized eggs of ascidians and mouse are associated with accumulations of cortical endoplasmic reticulum in the vegetal hemisphere. In ascidians, two distinct pacemakers (PM1 and PM2) generate two series of calcium waves necessary to drive meiosis I and II. Pacemaker PM2 is stably localized in a cortical ER accumulation situated in the vegetal contraction pole. We now find that pacemaker PM1 is situated in a cortical ER-rich domain that forms around the sperm aster and moves with it during the calcium-dependant cortical contraction triggered by the fertilizing sperm. Global elevations of inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) levels produced by caged Ins(1,4,5)P3 or caged glycero-myo-PtdIns(4,5)P2 photolysis reveal that the cortex of the animal hemisphere, also rich in ER-clusters, is the cellular region most sensitive to Ins(1,4,5)P3 and acts as a third type of pacemaker (PM3). Surprisingly, the artificial pacemaker PM3 predominates over the natural pacemaker PM2, located at the opposite pole. Microtubule depolymerization does not alter the activity nor the location of the three pacemakers. By contrast, blocking the acto-myosin driven cortical contraction with cytochalasin B prevents PM1 migration and inhibits PM2 activity. PM3, however, is insensitive to cytochalasin B. Our experiments suggest that the three distinct calcium wave pacemakers are probably regulated by different spatiotemporal variations in Ins(1,4,5)P3 concentration. In particular, the activity of the natural calcium wave pacemakers PM1 and PM2 depends on the apposition of a cortical ER-rich domain to a source of Ins(1,4,5)P3 production in the cortex. Movies available on-line

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3