Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity

Author:

Ikegaya Yuji1,Kim Jeong-Ah1,Baba Minami2,Iwatsubo Takeshi2,Nishiyama Nobuyoshi1,Matsuki Norio1

Affiliation:

1. Laboratory of Chemical Pharmacology and

2. Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

Abstract

Postsynaptic neuronal dendrites undergo functional and morphological changes in response to pathologically excessive synaptic activation. Although rapid formation of segmental focal swelling (varicosity) is the most prominent hallmark in such excitotoxic injury, little is known about the pathophysiological function of these structural alterations. We used cultured rat hippocampal slices to evaluate the relationship between the formation of varicosities and subsequent neuronal death. Substantial numbers of segmental dendritic varicosities were observed all over the hippocampus within 5 minutes of exposure to 30 μM NMDA, although neuronal death was detected only in the CA1 region 24 hours after NMDA exposure. Sublethal NMDA concentrations (1-10 μM) induced reversible focal swelling in all hippocampal subregions. NMDA-induced neuronal death was prevented either by NMDA receptor antagonists or by the use of Ca2+-free medium, whereas varicosity formation was virtually independent of Ca2+ influx. Rather, the Ca2+-free conditions per se produced dendritic focal swelling. Also, NMDA-induced varicosity formation was dependent on extracellular Na+ concentration. Thus, we believe that varicosity formation is not causally related to neuronal injury and that the two phenomena are separable and involve distinct mechanisms. Interestingly, dendrite swelling was accompanied by AMPA receptor internalization and a rapid, long-lasting depression in synaptic transmission. Moreover, low Na+ conditions or treatment with ethacrynic acid or proteinase inhibitors, which effectively prevent varicosity formation, aggravated NMDA-induced excitotoxicity, and eliminated the regional specificity of the toxicity. Therefore, the pathological changes in dendrite morphology and function may be associated with an early, self-protective response against excitotoxicity.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3