Developmental and morphological regulation of clathrin-mediated endocytosis inTrypanosoma brucei

Author:

Morgan Gareth W.1,Allen Clare L.1,Jeffries Tim R.1,Hollinshead Michael2,Field Mark C.13

Affiliation:

1. Wellcome Trust Laboratories for Molecular Parasitology, Imperial College of Science Technology and Medicine, Department of Biochemistry, Exhibition Road, London, SW7 2AY, UK

2. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK

3. Author for correspondence (e-mail: m.field@ic.ac.uk )

Abstract

Essentially all macromolecular communication between Trypanosoma brucei and its host is confined to vesicular trafficking events occurring at or around the flagellar pocket. The vertebrate stage bloodstream form trypomastigote exhibits an extremely high rate of endocytosis required for nutrient uptake and probably also evasion of the host immune system. However, the rate of endocytosis is very low in the procyclic vector parasite, indicating that endocytosis is subject to a marked level of developmental regulation. Previous ultrastructural studies and crude biochemical fractionations have indicated the presence of coated pits and vesicles that are analogous to clathrin coats in the bloodstream form, but not in the procyclic. However, a definitive description of the components of this coat and its molecular function in T. brucei has remained elusive. We describe the molecular cloning and initial characterisation of components of the T. brucei endocytic coats: clathrin heavy chain (TbCLH) and a β-adaptin (TbAPβ1). TbCLH is markedly upregulated in the bloodstream form compared with the procyclic, whereas TbAPβ1 is subject to more limited developmental regulation. We generated antisera against both proteins and show that the clathrin coat is tightly associated with the flagellar pocket in both major life stages. However, in bloodstream parasites TbCLH is also extensively distributed throughout the posterior end of the cell on numerous large vesicular and tubular structures. By cryoimmuno EM, clathrin is localised to collecting tubules at the flagellar pocket and is also associated with the trans-Golgi network. These EM data confirm that the electron dense coats reported on trypanosome vesicles and tubules contain clathrin. The TbAPβ1 exhibits an atypical distribution relative to previously characterised adaptins, associating not only with the trans-Golgi but also with other tubular-vesicular elements. Localisation of TbAPβ1 is also subject to developmental regulation. These data describe major endocytic coat proteins in T. brucei for the first time, and indicate stage-specific expression of the clathrin heavy chain. Modulation of clathrin expression is likely to be an important factor in the developmental regulation of endocytosis and recycling in the African trypanosome.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3