Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle

Author:

Wu X.1,Rao K.1,Bowers M.B.1,Copeland N.G.1,Jenkins N.A.1,Hammer J.A.1

Affiliation:

1. Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. hammerj@nhlbi.nih.gov

Abstract

The peripheral accumulation of melanosomes characteristic of wild-type mouse melanocytes is driven by a cooperative process involving long-range, bidirectional, microtubule-dependent movements coupled to capture and local movement in the actin-rich periphery by myosin Va, the product of the dilute locus. Genetic evidence suggests that Rab27a, the product of the ashen locus, functions with myosin Va in this process. Here we show that ashen melanocytes, like dilute melanocytes, exhibit normal dendritic morphology and melanosome biogenesis, an abnormal accumulation of end-stage melanosomes in the cell center, and rapid, bidirectional, microtubule-dependent melanosome movements between the cell center and the periphery. This phenotype suggests that ashen melanocytes, like dilute melanocytes, are defective in peripheral melanosome capture. Consistent with this, introduction into ashen melanocytes of cDNAs encoding wild-type and GTP-bound versions of Rab27a restores the peripheral accumulation of melanosomes in a microtubule-dependent manner. Conversely, introduction into wild-type melanocytes of the GDP-bound version of Rab27a generates an ashen/dilute phenotype. Rab27a colocalizes with end-stage melanosomes in wild-type cells, and is most concentrated in melanosome-rich dendritic tips, where it also colocalizes with myosin Va. Finally, neither endogenous myosin Va nor an expressed, GFP-tagged, myosin Va tail domain fusion protein colocalize with melanosomes in ashen melanocytes, in contrast to that seen previously in wild-type cells. These results argue that Rab27a serves to enable the myosinVa-dependent capture of melanosomes delivered to the periphery by bidirectional, microtubule-dependent transport, and that it does so by recruiting the myosin to the melanosome surface. We suggest that Rab27a, in its GTP-bound and melanosome-associated form, predominates in the periphery, and that it is this form that recruits the myosin, enabling capture. These results argue that Rab27a serves as a myosin Va ‘receptor’, and add to the growing evidence that Rab GTPases regulate vesicle motors as well as SNARE pairing.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3