Endogenously produced urokinase-type plasminogen activator is a major determinant of the basal level of activated ERK/MAP kinase and prevents apoptosis in MDA-MB-231 breast cancer cells

Author:

Ma Zhong1,Webb Donna J.2,Jo Minji1,Gonias Steven L.13

Affiliation:

1. Departments of Pathology,

2. Cell Biology2, and

3. Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA

Abstract

Urokinase-type plasminogen activator (uPA) binds to the uPA receptor (uPAR) and activates the Ras-extracellular signal-regulated kinase (ERK) signaling pathway in many different cell types. In this study, we demonstrated that endogenously produced uPA functions as a major determinant of the basal level of activated ERK in MDA-MB-231 breast cancer cells. When these cells were cultured in the presence of antibodies that block the binding of uPA to uPAR, the level of phosphorylated ERK decreased substantially. Furthermore, conditioned medium from MDA-MB-231 cells activated ERK in MCF-7 cells and this response was blocked by uPA-specific antibody. The mitogen-activated protein kinase kinase inhibitor, PD098059, decreased expression of uPA and uPAR in MDA-MB-231 cells. Thus, uPA and the uPAR-ERK signaling pathway form a positive feedback loop in these cells. When this feedback loop was disrupted with uPA- or uPAR-specific antibody, uPA mRNA-specific antisense oligodeoxynucleotides or PD098059, cell growth was inhibited and apoptosis was promoted, as determined by the increase in cytoplasmic nucleosomes and caspase-3 activity. Treating the cells simultaneously with PD098059 and uPA- or uPAR-specific antibody did not further promote apoptosis, compared with either reagent added separately, supporting the hypothesis that uPAR and ERK are components of the same cell growth/survival-regulatory pathway. The ability of uPA to signal through uPAR, maintain an elevated basal level of activated ERK and inhibit apoptosis represents a novel mechanism whereby the uPA-uPAR system may affect breast cancer progression in vivo.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3