Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G2/M-phase transition in Xenopus oocytes

Author:

Gotoh Tetsuya1,Ohsumi Keita1,Matsui Tomoko2,Takisawa Haruhiko2,Kishimoto Takeo1

Affiliation:

1. Laboratory of Cell and Developmental Biology, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501

2. Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Abstract

Checkpoint controls ensure chromosomal integrity through the cell cycle. Chk1 and Cds1/Chk2 are effector kinases in the G2-phase checkpoint activated by damaged or unreplicated DNA, and they prevent entry into M-phase through inhibition of cyclin B-Cdc2 kinase activation. However, little is known about how the effector kinases are regulated when the checkpoint is attenuated. Recent studies indicate that Chk1 is also involved in the physiological G2-phase arrest of immature Xenopus oocytes via direct phosphorylation and inhibition of Cdc25C, the activator of cyclin B-Cdc2 kinase. Bearing in mind the overlapping functions of Chk1 and Cds1, here we have studied the involvement of Xenopus Cds1 (XCds1) in the G2/M-phase transition of immature oocytes and the regulation of its activity during this period. Protein levels of XCds1 remained constant throughout oocyte maturation and early embryonic development. The levels of XCds1 kinase activity were high in immature oocytes and decreased at the meiotic G2/M-phase transition. Consistently, when overexpressed in immature oocytes, wild-type, but not kinase-deficient, XCds1 significantly delayed entry into M-phase after progesterone treatment. The inactivation of XCds1 depended on the activation of cyclin B-Cdc2 kinase, but not MAP kinase. Although XCds1 was not directly inactivated by cyclin B-Cdc2 kinase in vitro, XCds1 was inactivated by overexpression of cyclin B, which induces the activation of cyclin B-Cdc2 kinase without progesterone. Thus, the present study is the first indication of Cds1 activity in cells that are physiologically arrested at G2-phase, and of its downregulation at entry into M-phase.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference61 articles.

1. Abrieu, A., Brassac, T., Galas, S., Fisher, D., Labbe, J.-C. and Doree, M. (1998). The polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J. Cell Sci. 111, 1751-1757.

2. Brown, E. J. and Baltimore, D. (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev.14, 397-402.

3. Clute, P. and Masui, Y. (1997). Microtubule dependence of chromosome cycles in Xenopus laevis blastomeres under the influence of a DNA synthesis inhibitor, aphidicolin. Dev. Biol.185, 1-13.

4. Dasso, M. and Newport, J. W. (1990). Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell61, 811-823.

5. Dumont, J. N. (1972). Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol.136, 153-179.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3