Gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding

Author:

Wang Jin-Hui1,Wei Jian1,Chen Xin1,Yu Jiandong1,Chen Na1,Shi Jack2

Affiliation:

1. State Key Labs for Macrobiomolecules and Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, The People's Republic of China

2. Department of Physics, University of Kansas, Lawrence, KS 66049, USA

Abstract

Neuronal spike encoding and synaptic transmission in the brain need be precise and reliable for well-organized behavior and cognition. Little is known about how a unitary synapse reliably transmits presynaptic sequential spikes and how multiple unitary synapses precisely drive their postsynaptic neurons to encode spikes. To address these questions, we investigated the dynamics of glutamatergic unitary synapses as well as their role in driving the encoding of cortical fast-spiking neurons. Synaptic transmission patterns randomly fluctuate among facilitation, depression and parallel over time. The postsynaptic calmodulin-signaling pathway enhances initial responses and converts this fluctuation to a synaptic depression. We integrated current pulses mathematically based on synaptic plasticity and found that they improve spike capacity and timing precision by shortening the spike refractory period at postsynaptic neurons. Our results indicate that the gain and fidelity of synaptic patterns enable reliable transmission of presynaptic signals by the synapse and precise encoding of spikes by postsynaptic neurons. These reproducible neural codes may be involved in controlling well-organized behavior.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3