Integration of RNA processing and expression level control modulates the function of the Drosophila Hox gene Ultrabithorax during adult development

Author:

de Navas Luis F.1,Reed Hilary2,Akam Michael2,Barrio Rosa3,Alonso Claudio R.4,Sánchez-Herrero Ernesto1

Affiliation:

1. Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.

2. Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

3. Center for Cooperative Research in Biosciences CIC Biogune, Bizkaia Technology Park, Building 801-A, Derio 48160, Spain.

4. John Maynard Smith Building, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.

Abstract

Although most metazoan genes undergo alternative splicing, the functional relevance of the majority of alternative splicing products is still unknown. Here we explore this problem in the Drosophila Hox gene Ultrabithorax (Ubx). Ubx produces a family of six protein isoforms through alternative splicing. To investigate the functional specificity of the Ubx isoforms, we studied their role during the formation of the Drosophila halteres, small dorsal appendages that are essential for normal flight. Our work shows that isoform Ia, which is encoded by all Ubx exons, is more efficient than isoform IVa, which lacks the amino acids coded by two small exons, in controlling haltere development and regulating Ubx downstream targets. However, our experiments also demonstrate that the functional differences among the Ubx isoforms can be compensated for by increasing the expression levels of the less efficient form. The analysis of the DNA-binding profiles of Ubx isoforms to a natural Ubx target, spalt, shows no major differences in isoform DNA-binding activities, suggesting that alternative splicing might primarily affect the regulatory capacity of the isoforms rather than their DNA-binding patterns. Our results suggest that to obtain distinct functional outputs during normal development genes must integrate the generation of qualitative differences by alternative splicing to quantitative processes affecting isoform protein expression levels.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3