Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation

Author:

Jackson Sarah J.1,Zhang Zhaojie1,Feng Dejiang1,Flagg Meaghan1,O’Loughlin Evan1,Wang Dongmei1,Stokes Nicole1,Fuchs Elaine2,Yi Rui1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

2. Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.

Abstract

MicroRNAs (miRNAs) play important roles in differentiation of stem cells. However, the precise dynamics of miRNA induction during stem cell differentiation have not been visualized and molecular mechanisms through which miRNAs execute their function remain unclear. Using high-resolution in situ hybridization together with cell lineage and proliferation markers in mouse skin, we show that miR-203 is transcriptionally activated in the differentiating daughter cells upon the asymmetric cell division of interfollicular progenitor cells. Once induced, miR-203 rapidly promotes the cell cycle exit within 6 hours and abolishes self-renewal of the progenitor cells. With an inducible mouse model, we identify numerous miR-203 in vivo targets that are highly enriched in regulation of cell cycle and cell division, as well as in response to DNA damage. Importantly, co-suppression of individual targets, including p63, Skp2 and Msi2 by miR-203 is required for its function of promoting the cell cycle exit and inhibiting the long-term proliferation. Together, our findings reveal the rapid and widespread impact of miR-203 on the self-renewal program and provide mechanistic insights into the potent role of miR-203 during the epidermal differentiation. These results should also contribute to understanding the role of miR-203 in the development of skin cancer.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3