Evidence for microtubule nucleation at plasma membrane-associated sites in Drosophila

Author:

Mogensen M.M.1,Tucker J.B.1

Affiliation:

1. Department of Zoology and Marine Biology, University of St Andrews, Fife, UK.

Abstract

This report is concerned with the nucleation and organization of microtubule bundles that assemble after ‘conventional’ centrosomal microtubule-organizing centres have been lost. The microtubule bundles in question span the lengths of wing epidermal cells. Bundles extend between hemidesmosomes at the apical cuticle-secreting surfaces of cells and basal attachment desmosomes that unite the dorsal and ventral epidermal layers of developing wing blades. Furthermore, each bundle includes up to 1500 microtubules and most of the microtubules are composed of 15 protofilaments. Individual cells were serially cross-sectioned at an early stage of bundle assembly. The number of microtubule profiles/cell cross-section decreased progressively by up to 59% of the most apical values in section sequences cut from fairly apical to more basal levels in the cells. The apical ends of microtubules were associated with numerous small dense plaque-like sites (diameter 0.1-0.2 micron), which were specialized regions of plasma membranes at the apical surfaces of cells. Many of the microtubules near apical plaques were not well aligned with each other; they ‘radiated away’ from cell apices. This was in contrast to the situation at more basal levels where most microtubules were oriented parallel to the longitudinal axes of cells. These findings indicate that the relatively dispersed arrays of apical plasma membrane-associated plaques act as microtubule-nucleating sites to initiate basally directed elongation of bundle microtubules. Apical cell surfaces and their plaques seem to operate as microtubule-nucleating and -organizing regions that functionally replace the centrosomal microtubule-organizing centres lost earlier in cell differentiation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3