SPOC1: a novel PHD-containing protein modulating chromatin structure and mitotic chromosome condensation

Author:

Kinkley Sarah1,Staege Hannah1,Mohrmann Gerrit1,Rohaly Gabor1,Schaub Theres1,Kremmer Elisabeth2,Winterpacht Andreas3,Will Hans1

Affiliation:

1. Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany

2. Institute of Molecular Immunology, Helmholtz Center Munich, German Center for Environmental Health (GmbH), Marchioninstrasse 25, 81377 Munich, Germany

3. Institute for Human Genetics, Schwabachanlage 10, 91054 Erlangen, Germany

Abstract

In this study, we characterize the molecular and functional features of a novel protein called SPOC1. SPOC1 RNA expression was previously reported to be highest in highly proliferating tissues and increased in a subset of ovarian carcinoma patients, which statistically correlated with poor prognosis and residual disease. These observations implied that SPOC1 might play a role in cellular proliferation and oncogenesis. Here we show that the endogenous SPOC1 protein is labile, primarily chromatin associated and its expression as well as localization are regulated throughout the cell cycle. SPOC1 is dynamically regulated during mitosis with increased expression levels and biphasic localization to mitotic chromosomes indicating a functional role of SPOC1 in mitotic processes. Consistent with this postulate, SPOC1 siRNA knockdown experiments resulted in defects in mitotic chromosome condensation, alignment and aberrant sister chromatid segregation. Finally, we have been able to show, using micrococcal nuclease (MNase) chromatin-digestion assays that SPOC1 expression levels proportionally influence the degree of chromatin compaction. Collectively, our findings show that SPOC1 modulates chromatin structure and that tight regulation of its expression levels and subcellular localization during mitosis are crucial for proper chromosome condensation and cell division.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3