Nuclear RanGTP is not required for targeting small nucleolar RNAs to the nucleolus

Author:

Narayanan Aarthi1,Eifert Julia1,Marfatia Kavita A.2,Macara Ian G.3,Corbett Anita H.2,Terns Rebecca M.1,Terns Michael P.1

Affiliation:

1. Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Life Sciences Building, Athens, GA 30602, USA

2. Department of Biochemistry, Emory University, Atlanta, GA 30322, USA

3. Department of Pharmacology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA

Abstract

The small GTPase Ran is the central regulator of macromolecular transport between the cytoplasm and the nucleus. Recent work has suggested that RanGTP also plays an important role in regulating some intra-nuclear processes. In this study, we have investigated whether RanGTP is required for the intra-nuclear transport of RNAs. Specifically, we directly analyzed the nucleolar localization of Box C/D and Box H/ACA small nucleolar RNAs (snoRNAs)in mammalian (tsBN2) cells, Saccharomyces cerevisiae and Xenopus oocytes under conditions that deplete nuclear RanGTP and prevent RNA export to the cytoplasm. Our data suggest that depletion of nuclear RanGTP does not significantly alter the nucleolar localization of U3 snoRNA in tsBN2 cells. Complementary studies in the budding yeast S. cerevisiae using conditional Ran mutants as well as mutants in Ran regulatory proteins also indicate that disruption of the Ran gradient or of Ran itself does not detectably affect the nucleolar localization of snoRNAs. Finally, microinjection into Xenopus oocytes was used to clearly demonstrate that a specific pool of snoRNAs could still be efficiently targeted to the nucleolus even when the RanGTP gradient was disrupted by microinjection of mutant Ran proteins. Taken together, our data from three phylogenetically distinct experimental systems suggest that nuclear RanGTP,which is essential for trafficking of RNAs between the nuclear and cytoplasmic compartments, is not required for nuclear retention or nucleolar localization of snoRNAs.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3