Hypoxia induces downregulation of soluble guanylyl cyclase β1 by miR-34c-5p

Author:

Xu Xiaojian1,Wang Shumin2,Liu Juan1,Dou Dou13,Liu Limei13,Chen Zhengju1,Ye Liping1,Liu Huixia1,He Qiong1,Raj J. Usha4,Gao Yuansheng13

Affiliation:

1. Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China

2. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

3. Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China

4. Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, IL, USA

Abstract

Summary Soluble guanylyl cyclase (sGC) is the principal receptor for nitric oxide (NO) and crucial for the control of various physiological functions. The β1 subunit of sGC is obligatory for the biological stability and activity of the sGC heterodimer. MicroRNAs (miRNAs) are important regulators of gene expression and exert great influences on diverse biological activities. The aim of the present study was to determine whether or not the expression of sGCβ1 is specifically regulated by miRNAs. We report that miR-34c-5p directly targets sGCβ1 under hypoxia. Bioinformatics analysis of the sGCβ1 3′-untranslated region (3′-UTR) revealed a putative binding site for miR-34b-5p and miR-34c-5p, but only miR-34c-5p inhibited luciferase activity through interaction with sGCβ1 3′-UTR in HEK293T cells. Site-directed mutagenesis of the putative miR-34c-5p binding site abolished the negative regulation of luciferase expression. Overexpression of miR-34c-5p repressed the expression of sGCβ1 in stable cell lines, which was reversed by miR-34c-5p-specific sponge. Inoculation of mouse lung tissues in vitro with lentivirus bearing miR-34c-5p significantly decreased both the expression of sGCβ1 and NO-stimulated sGC activity, which was also rescued by miR-34c-5p-specific sponge. Furthermore, we identified the putative Sp1-binding site in the promoter region of miR-34c-5p. Luciferase reporter constructs revealed that Sp1 directly binds to the wild-type promoter of miR-34c-5p, which was confirmed by chromatin immunoprecipitation. In summary, these findings reveal that miR-34c-5p directly regulates sGCβ1 expression, and they identify the key transcription factor Sp1 that governs miR-34c-5p expression during hypoxia.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3