Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-1 in fibroblasts

Author:

Florin Lore1,Maas-Szabowski Nicole2,Werner Sabine3,Szabowski Axel1,Angel Peter1

Affiliation:

1. Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

2. Division of Differentiation and Carcinogenesis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

3. Institute of Cell Biology, ETH Zürich, Hoenggerberg, 8093 Zürich, Switzerland

Abstract

In skin, fibroblasts of the connective tissue play a decisive role in epidermal homeostasis and repair by contributing to the regulation of keratinocyte proliferation and differentiation. The AP-1 transcription factor subunit JUN plays a crucial role in this mesenchymal-epithelial interplay by regulating the expression of two critical paracrine-acting cytokines, keratinocyte growth factor (KGF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We have performed gene expression profiling of wild-type and Jun–/– mouse embryonic fibroblasts to identify additional players involved in this complex network, and have found pleiotrophin (PTN) and the stromal cell-derived factor 1 (SDF-1) as novel JUN-regulated factors. Both cytokines are expressed by dermal fibroblasts in vivo, as shown by semi-quantitative RT-PCR and in situ hybridization on murine skin sections. Using a heterologous feeder layer co-culture system, we demonstrated that PTN and SDF-1 exert a mitogenic effect on primary human keratinocytes. Moreover, SDF-1-induced keratinocyte proliferation could be specifically inhibited by neutralizing antibodies against SDF-1 or its receptor, CXCR4. Consistent with its role in promoting keratinocyte growth, PTN was upregulated during cutaneous wound healing in vivo. Interestingly, co-cultivation with keratinocytes stimulated PTN expression but repressed SDF-1 production in fibroblasts, demonstrating the complexity of the paracrine regulatory cytokine networks that control skin homeostasis and regeneration.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3