Targets for TNFα-induced lipolysis in gilthead sea bream(Sparus aurata L.) adipocytes isolated from lean and fat juvenile fish

Author:

Cruz-Garcia Lourdes1,Saera-Vila Alfonso2,Navarro Isabel1,Calduch-Giner Josep2,Pérez-Sánchez Jaume2

Affiliation:

1. Departament de Fisiología, Facultat de Biología, Universitat de Barcelona, 08028 Barcelona, Spain

2. Instituto de Acuicultura de Torre de la Sal (CSIC), Departamento de Biología, Cultivo y Patología de Especies Marinas, 12595 Ribera de Cabanes, Castellón, Spain

Abstract

SUMMARY The present study aimed to analyze adiposity heterogeneity and the role of liver X receptor (LXRα) and peroxisome proliferator-activated receptors(PPARs) as targets of tumour necrosis factor-α (TNFα) in gilthead sea bream (Sparus aurata L.). The screening of 20 fish at the beginning of the warm season identified two major groups with fat and lean phenotypes. Fat fish showed increased liver and mesenteric fat depots. This increased adiposity was concurrent in the adipose tissue to enhanced expression of lipoprotein lipase (LPL) whereas mRNA levels of the hormone-sensitive lipase (HSL) remained almost unchanged. The resulting LPL/HSL ratio was thereby highest in fat fish, which suggests that this group of fish has not reached its peak fat storage capacity. This is not surprising given the increased expression of PPARγ in the absence of a counter-regulatory raise of TNFα. However, this lipolytic cytokine exerted dual effects in primary adipocyte cultures that differ within and between lean and fat fish. One set of fat fish did not respond to TNFαtreatment whereas a second set exhibited a lipolytic response (increased glycerol release) that was apparently mediated by the downregulated expression of PPARβ. In lean fish, TNFα exerted a strong and non-transcriptionally mediated lipolytic action. Alternatively, TNFαwould inhibit lipid deposition via the downregulated expression of adipogenic nuclear factors (PPARγ and LXRα). TNFα targets are therefore different in fish with lean and fat phenotypes, which is indicative of the complex network involved in the regulation of fish lipid metabolism.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3