Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes

Author:

Halberg Kenneth A.1,Larsen Kristine W.2,Jørgensen Aslak1,Ramløv Hans2,Møbjerg Nadja1

Affiliation:

1. University of Copenhagen;

2. Roskilde University

Abstract

SummaryMany species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl- are the principle inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F-, SO42- and PO43- were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared to that of the external medium (Na+, ×70-800; K+, ×20-90; Ca2+ and Mg2+, ×30-200; F-, ×160-1040, Cl-, ×20-50; PO43-, ×700-2800; SO42-, ×30-150). In contrast, in the marine species H. crispae Na+, Cl- and SO42- are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F- are only slightly concentrated (×2-10). An anion deficit of ~120 mEq 1-1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg-1 in R. coronifer to 961±43 mOsm kg-1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3