Differential recruitment of E3-ubiquitin ligase complexes regulates RET isoform internalization

Author:

Hyndman Brandy D.1ORCID,Crupi Mathieu J. F.1ORCID,Peng Susan12ORCID,Bone Leslie N.3,Rekab Aisha N.1,Lian Eric Y.1ORCID,Wagner Simona M.1,Antonescu Costin N.3ORCID,Mulligan Lois M.1

Affiliation:

1. Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada K7L 3N6

2. Current address: Bio-Technical Resources, Manitowoc, WI, USA

3. Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada

Abstract

The RET receptor tyrosine kinase is implicated in normal development and cancer. RET is expressed as two isoforms, RET9 and RET51, with unique C-terminal tail sequences that recruit distinct protein complexes to mediate signals. Upon activation, RET isoforms are internalized with distinct kinetics, suggesting differences in regulation. Here, we demonstrate that RET9 and RET51 differ in their abilities to recruit E3-ubiquitin ligases to their unique C-termini. RET51, but not RET9, interacts with, and is ubiquitinated by CBL, which is recruited through interactions with the GRB2 adaptor protein. RET51 internalization was not affected by CBL knockout but was delayed in GRB2-depleted cells. In contrast, RET9 ubiquitination requires phosphodependent changes in accessibility of key RET9 C-terminal binding motifs that facilitate interactions with multiple adaptor proteins, including GRB10 and SHANK2, to recruit the NEDD4 ubiquitin ligase. We showed that NEDD4-mediated ubiquitination is required for RET9 localization to clathrin coated pits and subsequent internalization. Our data establish differences in the mechanisms of RET9 and RET51 ubiquitination and internalization that may influence the strength and duration of RET isoform signals and cellular outputs.

Funder

Canadian Institutes of Health Research

Cancer Research Society

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3