Transgenic isolation of skeletal muscle and kidney defects in lamininβ2 mutant mice: implications for Pierson syndrome

Author:

Miner Jeffrey H.12,Go Gloriosa1,Cunningham Jeanette1,Patton Bruce L.3,Jarad George1

Affiliation:

1. Renal Division, Washington University School of Medicine, St Louis, MO 63110,USA.

2. Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.

3. CROET, Oregon Health Sciences University, Portland, OR 97239, USA.

Abstract

Pierson syndrome is a recently defined disease usually lethal within the first postnatal months and caused by mutations in the gene encoding lamininβ2 (LAMB2). The hallmarks of Pierson syndrome are congenital nephrotic syndrome accompanied by ocular abnormalities, including microcoria(small pupils), with muscular and neurological developmental defects also present. Lamb2-/- mice are a model for Pierson syndrome;they exhibit defects in the kidney glomerular barrier, in the development and organization of the neuromuscular junction, and in the retina. Lamb2-/- mice fail to thrive and die very small at 3 weeks of age, but to what extent the kidney and neuromuscular defects each contribute to this severe phenotype has been obscure, though highly relevant to understanding Pierson syndrome. To investigate this, we generated transgenic mouse lines expressing rat laminin β2 either in muscle or in glomerular epithelial cells (podocytes) and crossed them onto the Lamb2-/- background. Rat β2 was confined in skeletal muscle to synapses and myotendinous junctions, and in kidney to the glomerular basement membrane. In transgenic Lamb2-/- mice, β2 deposition in only glomeruli prevented proteinuria but did not ameliorate the severe phenotype. By contrast, β2 expression in only muscle restored synaptic architecture and led to greatly improved health, but the mice died from kidney disease at 1 month. Rescue of both glomeruli and synapses was associated with normal weight gain, fertility and lifespan. We conclude that muscle defects in Lamb2-/- mice are responsible for the severe failure to thrive phenotype, and that renal replacement therapy alone will be an inadequate treatment for Pierson syndrome.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3